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LETTER TO THE EDITOR

Gauss–Codazzi equations for generic surfaces: equivalence
to the DS linear problem with constraint, linearizability
and reductions

B G Konopelchenko
Dipartimento di Fisica, Universita di Lecce, 73100 Lecce, Italy
and
Budker Institute of Nuclear Physics, Novosibirsk, Russia

Received 7 March 1997

Abstract. It is shown that the standard Gauss–Codazzi system of equations which describe
generic surfaces immersed into the three-dimensional Euclidean space is equivalent to the
two-dimensional Dirac equation (Davey–Stewartson linear problem) accompanied by a specific
constraint. It is demonstrated that this system is linearizable via the parametrization of the
moving trihedral by the Euler angles. Some special classes of surfaces are also considered.

The deep interrelation between many nonlinear differential equations of the classical
differential geometry of surfaces (see e.g. [1–3]) and modern soliton equations (see e.g.
[4, 5]) is well established now. Since the famous sine–Gordon equationφxy = sinφ and
the Liouville equationφxy = expφ this interrelation has been studied from various points
of view in numerous papers. Most of these papers were devoted to the study of special
classes of surfaces or surfaces referred to special coordinates and consequently to special
classes of associated nonlinear partial differential equations.

In the present paper, in contrast we will consider generic surfaces immersed into the
three-dimensional Euclidean spaceR3. We will demonstrate that the Gauss–Codazzi (GC)
equations for generic surfaces referred to their curvature lines are equivalent to a simple
system which consists of the two-dimensional Dirac equation (Davey–Stewartson (DS)-I
linear problem) and a specific constraint. It is shown that this constraint is associated with
the stationary point of the special symmetry of the DS-I linear problem. We demonstrate
that the generic GC system is linearizable. The parametrization of the moving trihedral
by the Euler angles is an appropriate tool. We also discuss solutions, reductions and other
properties of the GC system.

1. We consider a generic surface immersed into the three-dimensional Euclidean space
R3. It is well known that everywhere outside umbilic points the first and second fundamental
forms �1 and�2 can be diagonalized simultaneously (see e.g. [3]). Thus choosing the
curvature lines as the coordinate lines, one, generically, has

�1 = g11 dx2+ g22 dy2

�2 = d11 dx2+ d22 dy2. (1)
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In these coordinates the standard GC equations take the form (see [3])(
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We now denote

ψ1 = d11√
g11

ψ2 = d22√
g22

(3)

and

p = 1√
g22
(
√
g11)y q = 1√

g11
(
√
g22)x. (4)

In such notations equations (2) look like

ψ1y = pψ2 ψ2x = qψ1 (5a)

qx + py + ψ1ψ2 = 0. (5b)

Denoting
√
g11 = ψ̃1,

√
g22 = ψ̃2 and using the definition (4), one also has

ψ̃1y = pψ̃2 ψ̃2x = qψ̃1. (6)

In the form (5) the GC equations represent the two-dimensional Dirac equation or, in
soliton terminology, the DS-I linear problem (5a) with the constraint (5b). Note that the
DS-I linear problem (5a) represents the Codazzi equations while the constraint (5b) is the
Gauss equation. We will see that such a form of the GC equation is useful from different
points of view. The systems of equations of the type (5) are not completely new. Similar
systems have been discussed in [6] within the study of the so-called orthogonal nets.

The systems (5) and (6) provide us with the following way of constructing the surfaces.
First one has to solve the system (5). Then takingp andq as found, one finds̃ψ1 and ψ̃2

by solving (6). As a result one gets the three fundamental forms of the surface

�1 = ψ̃2
1 dx2+ ψ̃2

2 dy2 �2 = ψ̃1ψ1 dx2+ ψ̃2ψ2 dy2 �3 = ψ2
1 dx2+ ψ2

2 dy2. (7)

and, according to the well known theorem (see e.g. [1–3]), a surface is determined to within
a motion in space. In particular, the principal curvatures are

K1 = ψ1

ψ̃1
K2 = ψ2

ψ̃2
(8)

and the total curvatureK is equal to

K =
∫ ∫

S

K1K2

√
detg dx ∧ dy =

∫ ∫
S

ψ1ψ2 dx ∧ dy = −
∫ ∫

S

(qx + py) dx ∧ dy. (9)

Note that the umbilic points (K1 = K2) correspond to linearly dependent solutions

ψi, ψ̃i

(∣∣∣∣ψ1 ψ̃1

ψ2 ψ̃2

∣∣∣∣ = 0

)
.

The constraint (5b) (Gauss equation) is crucial for the geometric interpretation of the
system (5). It picks up those solutions of the DS-I linear problem (5a) and (6) for which
ψ̃2
i , ψ̃iψi , ψ2

i (i = 1, 2) are components of the fundamental forms (7) of some surface.
The constant (5b) is connected with the special symmetry of the linear system (5a). Indeed,
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one can show that the DS-1 linear problem (5a) is form-invariant under transformations
(p, q, ψ1, ψ2)→ (p′, q ′, ψ ′1, ψ

′
2) given by the relations

ψ ′1 = ψ∗1,x − p′ψ∗2 + ψ ′1φ ψ ′2 = −ψ∗2,y + q ′ψ∗1 + ψ ′2φ qx + p′y + ψ ′1ψ2 = 0
q ′x + py + ψ1ψ

′
2 = 0 q ′p′ = qp (10)

whereψ∗1 , ψ∗2 are the solutions of the formally adjoint DS-I linear problem

ψ∗1y = −qψ∗2 ψ∗2x = −pψ∗1 (11)

andφ is defined byφx = ψ1ψ
∗
1 , φy = −ψ2ψ

∗
2 . The stationary point of the transformation

(10) is characterized by the conditions

ψ1 = ψ∗1,x − pψ∗2 + ψ1φ ψ2 = −ψ∗2,y + qψ∗1 + ψ2φ qx + py + ψ1ψ2 = 0. (12)

Thus, the constraint (5b) selects those solutions of the DS-I linear problem (5a) which
are invariant under transformation (10). More generally, the constraint (5b) picks up the
solutions of the system (5a) for which the combinations

χ1 = ψ∗1,x − pψ∗2 + ψ1φ χ2 = −ψ∗2,y + qψ∗1 + ψ2φ

solve the same system (5a) asψ1 andψ2.
2. Let us now consider some special classes of surfaces. The simplest example is

given by ψ1 = α sinθ , ψ2 = α cosθ , p = θy, q = −θx for which the system (5a) is
satisfied identically while equation (5b) becomes the well known sine–Gordon equation
θxx − θyy = 1

2α
2 sinθ . Choosingψ̃1 = α̃ sinθ , ψ̃ = α̃ cosθ , we getK1 = K2 = α/α̃. It is

the well known case of the round sphere.
For the isotermic surfacesg11 = g22 (see [1–3]). Sop = θy , q = θx whereθ = 1

2 logg11

and the system (5) is of the form

ψ1 = θyψ2 ψ2 = θxψ1 (13a)

θxx + θyy + ψ1ψ2 = 0. (13b)

In the terms of the principal curvaturesK1 = ψ1 exp(−θ), K2 = ψ2 exp(−θ) the
system (13) has the well known form [1–3]. It has recently been studied in [7]. Choosing
ψ1 = α expθ + β exp(−θ), ψ2 = α expθ − β exp(−θ) whereα, β are arbitrary constants,
one satisfies equations (13a) identically while equation (13b) takes the form

θxx + θyy + α2 exp 2θ − β2 exp(−2θ) = 0 (14)

which is the well known equation (the Liouville equation atβ = 0 and sinh–Gordon equation
for α 6= 0, β 6= 0). Takingψ̃1 = α̃ expθ + β̃ exp(−θ) andψ̃2 = α̃ expθ − β̃ exp(−θ) where
α̃, β̃ are arbitrary constants andθ is a solution of equation (14), one gets a family of
isotermic surfaces with the fundamental forms and principal curvatures given by (7) and
(8). The Gaussian curvatureK and mean curvatureH are of the form

K = α2 exp 2θ − β2 exp(−2θ)

α̃2 exp 2θ − β̃2 exp(−2θ)
H = αα̃ exp 2θ − ββ̃ exp(−2θ)

α̃2 exp 2θ − β̃2 exp(−2θ)
.

Choosing the constantsα, β, α̃, β̃, one gets various particular cases. For instance,
at α = β and β̃ = 0 one has the constant mean curvature surfaces withH = α/α̃ and
K = (α2/α̃2)(1− exp(−4θ)).

The third special case is given by the constraintq = 1. The system (5) takes the form

ϕxy − pϕ = 0 py + 1
2(ϕ

2)x = 0

whereϕ = ψ2. The integrability of this system has been demonstrated in [8]. In fact, it is
equivalent to the sine–Gordon equation [9].
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3. The GC system is the compability condition for the linear Gauss–Weingarten–
Mainardi–Peterson (GWMP) equations (see [1–3]). In the terms ofp, q, ψ1 and ψ2,
the GWMP equations for generic surfaces look like

χx = (ψ1S2+ pS3)χ χy = (−ψ2S1− qS3)χ (15)

whereχ is the 3× 3 orthogonal matrix the first two lines of which are formed from the
cosine-directions of the tangent vectors and the third line is formed by the three components
of the normal vector. The matricesS1, S2, S3 are of the form(Si)kl = −εikl (i, k, l = 1, 2, 3)
and εikl is a totally antisymmetric tensor(ε123 = 1). MatricesSi obey the commutation
relations [Si, Sk] = εiklSl i, k = 1, 2, 3 and they form a basic of the algebra so(3). Using
the isomorphism between so(3) and su(2), one gets the simplest spinor form of the system
(15):

φx = 1
2i(ψ1σ2+ pσ3)φ φy = − 1

2i(ψ2σ1+ qσ3)φ (16)

whereσ1, σ2, σ3 are the standard Pauli matrices(Sk = ( 1
2i)σk).

The linear system (16) contains no spectral parameter. Nevertheless, as we will see, it
is a rather useful tool with which to analyse the system (5). First we note for real-valuedp,
q, ψ1 andψ2 equation (16) implies thatφ+φ = A whereA is a constant positively defined
matrix. So without loss of generality one can consider solutionsφ of the system (16) as
the unitary 2× 2 matrices(φ+φ = 1).

From (16) one has

ψ1σ2+ pσ3 = 2iφxφ
+ ψ2σ1+ qσ3 = −2iφyφ

+. (17)

Equations (16) imply that any unitary 2×2 matrixφ such that theφxφ+ andφyφ+ have
the form of the left-hand side of (17) provides via (17) the solution of the GC system (5). To
describe such matrices we note that as the result of the property tr(φxφ

+) =tr(φyφ+) = 0,
this requirement is equivalent to the following conditions

tr(σ1φxφ
+) = 0 tr(σ2φyφ

+) = 0. (18)

So any 2× 2 unitary matrixφ which obeys the constraints (18) provides via (17) a
solution of the GC system (5).

To solve the constraints (18) we use the well-known parametrization of the unitary
matrix

φ =
(

cosβ/2 e−
i
2 (α+γ ) − sinβ/2 e

i
2 (α−γ )

sinβ/2 e−
i
2 (α−γ ) cosβ/2 e

i
2 (α+γ )

)
(19)

by the Euler anglesα, β, γ (see e.g. [10]). Hereα, β, γ are real-valued functions ofx
andy. Straightforward calculation shows that in such a parametrization the constraints (18)
take the form

(log tgβ/2)x = ctgα · γx (log tgβ/2)y = −tgα · γy. (20)

On the other hand, the use of the formula (17) gives

p = αx + cosβ · γx q = −αy − cosβ · γy ψ1 = −sinβ

sinα
· γx

ψ2 = sinβ

cosα
· γy. (21)

So, any three functionsα, β, γ which obey the system of equations (20) provide via (21)
a solution of the GC system (5). It is easy to check this fact straightforwardly. Note that
equation (20) implies

γxy = (log sinα)y · γx + (log cosα)x · γy (22)



Letter to the Editor L441

and a similar equation forV = log tgβ/2. It is important that the system (20) contains
the functionα algebraically and there is no constraint onα. Thus the formulae (20) and
(22) provide us with the linearization of the GC system (5): first, one chooses an arbitrary
function α(x, y), second, one solves the linear Laplace equation (22), then, integrating the
right-hand side of (20), one findsβ and, finally, the formulae (21) give us a solution of
equations (5). Note that the parametrization of the moving trihedral by the Euler angles has
been used by Bonnet [11] for the triply orthogonal systems of surfaces.

So, the generic GC system is the C-integrable nonlinear system (linearizable by change
of variables) in contrast to some its special cases (like the sine–Gordon equations) which
are S-integrable systems (integrable by the inverse spectral transform method).

4. The linearization (21) and (22) provides us with the way to construct solutions of
the system (5). Indeed, let us start withα = α0 = constant. The general solution of
equation (22) in this case isγ = a(x)+ b(y) wherea andb are arbitrary functions. Then
(20) gives tan1

2β = exp[− cotα0 · a(x)+ tanα0 · b(y)]. Finally, one gets

p = − tanα0(log cosz)x q = − cotα0(log cosz)y

ψ1 = 2

cosα0
[log(1+ expz)]x ψ2 = 2

sinα0
[log(1+ expz)]y (23)

where z = − cotα0 · a(x) + tanα0 · b(y). To proceed we can use the Darboux type
transformation for equation (22) found within a different context in [12]:

γ → γ ′ = γ − γ̃ M(γ̃ , γ )
M(γ̃ , γ̃ )

α→ α′ = α + 2 arctan
γx

γy

whereγ̃ is an another solution of (22) andM(ϕ, χ) = ϕxχy − ϕyχx .
The linearizability of the GC equations via the transformation (21) breaks down for

special (non-generic) classes of surfaces. For instance, for the sine–Gordon reduction
(px + qy = 0) one has an additional equation

αxx − αyy + (cosβ · γx)x − (cosβ · γy)y = 0.

For the isometric surfaces (px − qy = 0) the constraint is

αxx + αyy + (cosβ · γx)x + (cosβ · γy)y = 0.

The forms (5) and (20) of the GC equations are useful for an analysis of other properties
of surfaces too.

The author is grateful to B Dubrovin for useful discussion.
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